
r.JISl~EY
For the TRS-80 Color Computer

Written by
David D. Mcleod

Manual and Program Published and Copyright © 1983

·dventure
INTERNATIONAL

A Subsidiary of Scott Adams, Inc.
P.O.Box 3435

Longwood, FL 32750
(305) 862-6917

----ULTRA UTILITY SERIES ___ _

DIS KEY
DISK ACCESS AND REPAIR KEY

CONTENTS

Introduction . 3
Program Operation . 4

DISKEY Functions
(1) DISK MAP . 5
(2) EXAMINE/EDIT DISK 6

Graphic Display Mode . 6
Hexadecimal Display Mode . 7
Edit Mode . 8
Editing Control Switches . 8

(3) ERASE DISK . 9
(4) BACKUP UTILITY , 10
(5) COPY TO NEW DISK ·... 10
(6) RECONSTRUCT DIRECTORY 10
(7) PRINT DIRECTORY . 12
(8) CALIBRATE DRIVE -. 13

Disk Drive Diagram 14
Care & Maintenance . 15

The Color Computer Disk System . Appendix A
General . 19
The Directory • . 21
Directory Layout Diagram . 21
Recovering Kl lled Files ·. 24

Notes on File Structure . Appendix B
Binary BASIC Programs 26
Machine language Programs . 28
ASCII BASIC Programs ~ 28
Data Files . 29

Charts & Tables Appendix C
Directory Reconstruction Charts . 30
BASIC Tokens : 33
CHR$/POKE Comparison 35
Hex To Decimal Conversion 36

____ ULTRA UTILITY SERIES ___ _

Sample Run Through • • . . • . . . • • • • • • • • . . • . • • • Appendix D

Sample Printouts . • . • . • • • . • . • . • . • • • . • • • • • . . • • • . • . • . . • . . Appendix E
Track/ Sector Printout • • . • . . . • • • • • • 44
Director\' Printout . 45

DIAGNOSTICS

(1) ROM Test•......... . . 46
(2) RAM Test . • 46
(3) KEYBOARD Test 46
(4) JOYSTICK Test 47
(5) PRINTER Test 47
(6) CASSETTE Test 47
(7) DISK Test 48
(8) VIDEO Test 49
(9) SOUND Test 50

____ ULTRA UTILITY SERIES ___ _

INTRODUCTION

Anyone who owns a disk system for the Color Computer will, sooner
or later, experience that horrible feeling of anguish that always
accompanies the discovery of an inexplicably unreadable sector. Murphy's
1,294th law states that this tragedy will likely befall you just before you've
had a chance to generate a listing, and certainly before you've made a
backup!

How many programmers will skip the backup until they've filled at least
half the disk? And how many more will delay getting a listing, in the interest
of saving paper, until they are satisfied that the program is (almost) fully
debugged. If my own programming habits are any indication, there are
probably quite a few of us around!

Those who fall into either category will almost certainly require this
program at one time or another. But, even if you don't really need this
program to resurrect a crashed disk, I think you'll find that it provides a
sound basis for learning how your disk system operates.

DISKEY, written entirely in machine language, was designed primarily
to assist you in recovering data from a "slipped disk" and for recovering
Killed files. But it can be used to examine, modify, or copy any disk at all,
just as long as there is at least one readable sector somewhere. I think you 'll
find DISKEY to be a powerful and helpful utility to add to your software
library.

DIAGNOSTICS

Often, apparent software errors are really caused by hardware
problems. CCDIAG tests all the major functions of your system, including
ROMS, RAM, the keyboard, joysticks, printer, cassette and disk drive,
video and sound. Appropriate messages are constantly displayed to make
the program very easy to use. The program assumes nothing, except that
your ROMs are BASIC 1.1, Extended BASIC 1.0, and Disk BASIC 1 .0.

Not only does CCDIAG test Y<?Ur system, but it also incorporates
interactive graphic and sound tests for experimentation purposes, making it
all the more versatile and fun to use.

Minimum system requirements are 16K of RAM and at least one disk
drive. Some functions (the BACKUP utility and any COPY involving more
than one track at a time) will require at least 32K of RAM. Some features of
each of the programs require additional equipment: cassette player,
joysticks, and/or 80-column printer.

____ ULTRA UTILITY SERIES ___ _

PROGRAM OPERATION

Before proceeding any further, prepare one or two backups of your
Master disk, following the instructions in your Disk System Owner's
Manual, and put your Master disk away for safe keeping. Obtain a couple
of blank, formatted disks to experiment with, and put a copy of your
program disk in Drive #0.

When you take a directory, you will notice that only one file is
displayed: "MASTER BAS 0 B 1". This is a deliberate liel In fact, there are
several files on your disk. Appendix D "Sample Run Through" will explain
how you can find and make use of them.

To get the program in operation, simply type: RUN ,;MASTER" WU!l
and very shortly the master menu will appear. From this Master Menu,
select the program of your choice by pressing the appropriate number key.
If the program you have selected is not already in memory, you will be
asked to put the program disk in Drive #0. When you press rmm. that
program will automatically load and begin execution.

Both DISKEY and CCDIAG have their own menus for option selection.
·When you have finished using either of these programs, you must return to
the Master Menu before you can return to BASIC. When '(OU do return to
BASIC, you will notice that Drive #0 will be restored to Track IO. This
makes it easier for the system to locate the directory Track for whatever you
wish to do next. It is recommended that you thoroughly familiarize yourself
with this manual before using either of the programs.

____ ULTRA UTILITY SERIE$ ___ _

DISKEY FUNCTIONS

DISK MAP

This unique feature gives you a graphic display of an entire disk by
producing a rectangle of 35 tracks (rows) by 18 sectors (columns). Each
individual track/ sector intersection is color-coded as to its readability -

- a yellow block indicates a good sector;
- a blue block indicates a read or CRC (Cyclic Redundancy Check)

or lost data error;
- a green block indicates a write fault;
- a red block (same as background color) indicates a drive-not-

ready error or other input/ output error.

To display a disk map, simply press D at the main menu. Respond to
the prompt for Drive number, and press ~ when the disk is in the
appropriate drive and the door is closed.

The red graphics screen will appear, with the Drive number at the top,
track numbers down the left side, and a color-coding legend on the right.
The track numbers are organized into 7 groups of 5 tracks each, with only
the start and end track numbers of each group (00-04, 05-09, etc.) displayed
on the screen. For further clarity, a short green line and a short blue line are
placed at the start and end point of each 5-track group.

As the drive begins to read the disk, sector blocks will appear on the
screen, starting with Sector #1 on the left side and continuing to Sector #18
on the right side. This process will continue for each track until all tracks
have been read.

Occasionally, the drive may encounter a sector which is unreadable.
When this happens, the drive will attempt to read the sector a maximum of
five times. If it is totally unsuccessful, the display will indicate some type of
error, usually a blue (read error) block. The drive will continue to read
subsequent sectors as before.

In some (unusual) instances, the drive may detect an error and
determine it to be a "drive-not-ready." error, in which case the display will
stop altogether, and the cursor will appear in the lower right comer of the
screen. When this happens, you can attempt to read past the faulty sector
by pressing ti (continue).

Under most circumstances, the map will be generated uninterrupted
and, for a good disk, will produce a 35 by 18 rectangle of yAllow blocks. You
can abort the display and return to the main menu at an) time by pressing

----ULTRA UTILITY SERIES ___ _

l:l;lf·':i. Once the display is complete, the cursor will appear in the lower right
comer. If ·you wish to produce another map, . you can change disks and
press ll.lestart.

Disk Map Key Summary

!:J;Jt!l:f return to main menu
(active at all times)

[llEST ART clear screen and produce a new map
(active whenever cursor appears)

t90NTINUE ignore faulty sector and continue to read
subsequent sectors
(active when cursor appears AND map is
incomplete)

EXAMINE/EDIT DISK

This is the work-horse of DISKEY. All data from each sector is read
into 2 separate buffers: the screen, for display and modification; and a
secondary "unedit" buffer. Press ~ at the main menu and respond to the
prompts. When the disk is in place and the door is closed, press WI:m].

A) Graphic Display Mode

Shortly, the screen will display an information line (e.g., ·DRIVE
O/TRACK 17 /SECTOR 01), a 256-byte graphic block of 8 lines with 32
characters each (this block is a representation of the sector being read), and
a flashing prompt line at the bottom, containing a list of valid keys, as
follows:

C Read the same sector rlJain; good for changing disks to
compare data.

[:J Change ~ives; you will be prompted for both Drive and Track
numbers.

a Select [ldit mode; this will be discussed separately.
[D Select II]exadecimal display mode; this will be discussed

separately.
~ Send the current Track/Sector data from the "unedit" buffer

to the [l-inter (see the appendices for a sample printout.)
m tf.\Jit; return to the main menu.

----ULTRA UTILITY SERIES ___ _

ii'ite the current contents of the display buffer to disk; you
will be prompted with "ARE YOU SURE (Y.N)7"; respond
accordingly. If you answer il the display data wm be written
to the Track/Sector specified in the information line. (NOTE:
if, having written to the disk, you discover you have made an
error, and you have NOT YET READ a different sector, you
can recover from the error by entering the EDIT mode,
performing an UNEDIT, returning to the Graphic Display
Mode, and re-writing to the SAME Track/Sector. See EDIT
MODE for more details.) ·

ll Read previous sector.
1J Read next sector.
II Read same sector on next track.
D Read same sector on previous track.

8) Hexadecimal Display Mode

For every graphic character that appears on the screen under Graphic
Display Mode, two hexadecimal digits must be used to represent that
character. In other words, 256 graphic bytes (one complete sector) of data
will require 512 hex digits for an equivalent display. Since this leaves no
room on the screen for additional information, the hex display is divided
into two "half-pages" of data. This display uses the contrast of normal
versus inverse video to highfigh.t pairs of hex digits. The information line at
the top of the screen remains the same as for Graphic Display Mode, but
the flashing prompt line is slightly different.

C Read same sector ~ain.
[:J Change [:)'ives; you will be prompted for Drive and Track

number, as befo.re; NOTE that Graphic Display Mode will be
automatically re-selected. .
[Jip pages; upon initial selection of Hex Display Mode, the 1st
half-page is selected. Pressing~ will the cause the display to
shift back and forth between the 1st and 2nd half-page.

~ Select [taphic Display Mode.
~ Send data from the "unedit" buffer to the [tinter.
t:J Q)Jit; return to main menu.
II Read previous sector. m Read next sector.
II Read same sector on next track.
D Read same sector on previous track.

Note that you cannot write to disk or select Edit Mode from Hex
Display Mode. You must return to Graphic Display Mode first.

----ULTRA UTILITY SERIES ___ _

C) Edit Mode

The Edit Mode allows you to modify data within the graphics block on
the screen, In preparation for writing to the disk later. The information line
remains at the top of the screen. Slightly below, and on the left side of the
screen, the hex value of the byte under the cursor will appear. This number
will change as you move the cursor around. The cursor itself will initially
appear at the upper left corner of the graphic block. The nonflashing
prompt line a~ the bottom of the screen is quite different from the previous
prompt lines.

m ~lete the character under the cursor; auto-repeat is in effect.
D Move the character under the cursor (and all other characters

to the right and below) one space to the right and Lhsert a
blank (60 Hex); the last byte in the lower right corner of the
graphic block is lost; no auto-repeat.

CJ C]estore the byte under the cursor to its original value;
effective as long as the cursor has not been moved since
editing of the current byte began.

W ~edit entire graphic block; that is, restore entire block to its
original contents; cursor will remain in its current position.

fl flero entire graphic block; that is, load display page with hex
FF's (orange block); cursor will be homed _ to upper left
corner.

D (Plus key) Increment the byte under the cursor; auto-repeat is
in effect; if the Willi key is held down simultaneously,
incrementing will occur more quickly.
(Minus key) Decrement the byte under the cursor; auto­
repeat is in e.ffect; if the WIIiJ key is held down
simultaneously, decrementing will occur more slowly.

ml Move cursor left one space.
I] Move cursor right one space.
8 Move cursor down one line.
II Move cursor up one line. (The arrow keys all incorporate

auto-repeat, which can be slowed down for precision by
pressing the mIW key simultaneously. As well, total
wraparound is in effect.)

1J Etft to Graphic Display Mode.

Editing Control Switches

Two additional keys are available to allow you to enter data in slightly
different ways: the !:JjJf!1:f and cs!t·!;f keys. To engage either function,

____ ULTRA UTILITY SERIES ___ _

posi~ion the cursor" where you want ·data entry to begin, press the
appropriate key, enter data until you are done, and press the SAME control
key again to de-select and return to the normal Edit Mode.

!:J;1!!1:f (Direct Keyboard Entry) - BASIC's familiar INPUT cursor
will appear at the last Edit cursor position; simply type in what
you like from the keyboard; when done, press !:J;lf·U again to
de-select.

[tl!t·1;l (Hexadecimal Entry) - BAS I C's cursor will appear at the Hex
data display point just above the graphic block; enter data in
hexadecimal format; as each pair of digits is typed in, the
corresponding graphics character will appear on the graphic
block at the last Edit cursor position; when done, press t!Ifl1
again to de-select.

For both of these control switches, automatic wraparound takes place,
and the data you enter will over-write any data that was there before. Also,
in the l:ljlf·1:i option, if you attempt to enter lowercase (inverse video
characters) on the screen, they will appear quite different from what you
expect. Have no fearl This is not an errc;>r - the characters on the screen
are the true representations of the ASCII values you _select, not the
modified values that BASIC's PRINT statements send to the screen for
readability. Take a look at the CHRS$-POKE table in the appendix, or, if you
prefer, write your data to disk, reread it, and send the data to the printer.

NOTES: 1. If at any time, one of the aforementioned keys seems to have
no effect, try WIW tiJ first; in all likelihood, you are in lowercase
mode.
2. You can use the Examine function to transfer sectors
individually from ~ne disk to another. Simply read the appropriate
sector from the SOl~rce disk, place the Destination disk in the
SAME drive, and press~ and answ~r D to the warning prompt. If
you need to transfer an entire Track, use the Copy function.

ERASE DISK

This feature works in a similar manner to the DSKINI command, by
first sending a sequence of zeroed (loaded with hex FF's) blocks to each
sector and then rereading the disk for verification. It will NOT format a
blank disk, but it will work on any disk that has been properly initialized
previously.

Press~ at the main menu and respond to the prompts. When·the disk is
in place and the door is closed, hit 11:1o;J. Immediately, the computer will
begin to write data to the disk and display an appropriate message. When
all 35 tracks have been written, the computer will start over and read data to

----ULTRA UTILITY SERIES ___ _

verify that everything is correct. Again, an appropriate message will be
displayed.

When the process is complete, you will be returned automatically to
the main menu.

BACKUP UTILITY

This function is much the same as BASIC's BACKUP command, but
the activity is more clearly displayed. The routine transfers data four tracks
at a time from any specified drive to any other specified drive. If the source
and destination drives are the same, you will be prompted to exchange
disks when necessary.

Before beginning, make sure that your source and destination disks are
clearly identified. For added protection, it is recommended that you place a
write-protect label on your source disk, just in case you confuse disks.

When you are all set, press ~ at the main menu, respond to the
prompts for Source and Destination drive numbers, and press ~ when
ready. If you are performing a one-drive backup, you will be prompted to
change disks as necessary. The computer will read data from the source
disk into its buffer and display an appropriate message as it does so. Then h

· will write the data to the destination disk and verify that it was written
correctly.

When the backup is successfully completed, you will be returned
automatically to the main menu.

COPY TO NEW DISK

This routine is function~lly identical to the BACKUP utility. The only
difference is that you specify a Start and End Track number to COPY. Al:
the displays and prompts will be the same as f<:>r the BACKUP utility.

The COPY utility is extremely helpful in recovering data from a flawed
disk. If, for example, track 17 (the directory track) appears to be faulty, you
can perform two COPY's to the same Destination disk. First, you copy
tracks 0 to 16 inclusive, then you copy tracks 18 to 34 inclusive. Simple!

Since the COPY function transfers whole tracks only, you'll need a
way to transfer individual sectors. This is explained in the EXAMINE/EDIT
DISK description.

RECONSTRUCT DIRECTORY

This routine is powerful and easy to use. It does, however, require an
understanding of the Disk System's method of file control (explained in

____ ULTRA UTILITY SERIES ___ _

some detail in the appendix). Assuming you have positively identified the
start and end point as well as the type and format of each retrievable file on
your disk, you can use this routine to reconstruct a directory consisting of
up to 68 unique entries.

Before selecting this option, be sure you have gone through the entire
disk and located and properly documented each existing file. Use the
included charts (See Appendix C) to keep track of all your data. When all
your information has been transposed to Chart #3, press ~ at the main
menu, and respond to the prompt for Drive number.

In the upper left corner of the screen you will see a constant reminder
as to which file (by number) you are currently working on. Immediately
below this, you will see one of four questions related to the file, each of
which must be answered with an allowable response followed by pressing
WJm.

1. The first question asks for type of file and offers 4 options: ~
BASIC PROGRAM, D BASIC DATA FILE, ~ MACHINE
LANGUAGE PROGRAM, ~ EDITOR SOURCE FILE.

2. The second question requests storage format, ~ BINAR.Y or D
ASCII.

3. Question three asks for granule numbers in CHRONOLOGICAL
order - that is, the order in which they would normally be loaded
into memory - NOT, necessarily numerical order. Each granule
number MUST be followed by pressing~· When you have
entered the last granule number, type W to signify that there are
no more granules to record. Note that you MUST enter at least
one granule number per file.

4. Question four requests the number of sectors in the last granule
which are part of the actual file. The response will always be a
number from 1 to 9.

After you have responded to all four prompts, the information will be
re-displayed on the screen for your ver.ification. If you find that some of
your data has been entered in error, you can easily correct it at this point.
When your data is correct, respond with iJ, and you will be asked if there are
any more file entries. If so, just type [i; otherwise, type~· When you have
completed all the file entries, or there is no more room for additional entries,
the next prompt will be: BUFFER FULL - SEND (Y.N.)7 Typing~ at this
point will return you to the main menu; typing iJ will cause the message
"PRESS lj(iOjJ WHEN READY?" to appear. And when you press·rmm. the
data will be sent to the disk, the new directory will be written, and you will
be returned to the main menu.

____ ULTRA UTILITY SERIES ___ _

If you now examine track 17, you will notice that filenames in Sectors 3
through 11 consist of a letter (A to H) and a number (1 to 9) in
lexicographical order. Each left-justified, blank-filled filename also has a
~haracter extension that denotes the type of file: BAS for BASIC
program, DAT for BASIC data file, MLP for .machine-language program,
and ESF for editor source file. When you return to BASIC, you can easily
RENAME these files if you wish.

Note also that, for convenience, this subroutine automatically assumes
256 bytes in the last sector of the file. You will see this in bytes 14 & 15 of
the related directory entry. Using the information from your charts, you can
make necessary corrections to these bytes by going into the EDIT mode
and writing the new data to the disk. It should be noted, however, that
these corrections are not strictly required for BASIC program files,
regardless of storage format, but they are required for all other types of
files. See the appendices for ~ore details.

PRINT DIRECTORY

This simple routine, which assumes you have a standard 00-column
printer, allows you to obtain a hard copy of your disk directory. Press ~ at
the main menu and respond to the prompt for Drive number. You will be
asked for the name of the disk, and you can enter up to 57 characters of
descriptive information. When you are ready, press lJmD, and the printout
will begin.

Following the header line, you will see the filenames and pertinent data
in their familiar screen format. To the right of each directory entry, you will
also see a data line describing the file type and storage format. The last line
of the printout will let you know how much free space (in granules) is
available on that disk.

See the appendix for a sample printout.

____ ULTRA UTILITY SERIES ___ _

CALIBRATE DRIVE

••••••••NOTICE••••••••

The following section is provided for informational
purposes only, and is not intended for use by the general public.
High voltage is present inside your disk drive, and contact with it
could result in damage to the drive itself as well as severe injury
or death.

Because of these potential hazards, we include this chapter
for the convenience of qualified personnel. We recommend that
the steps outlined in it be performed only by a reliable service
facility.

This function simply turns on the selected disk drive so that you can
perform necessary cleaning and adjustments periodically. It will not actually
do the calibration for you, so the title of this section is a bit of a misnomer!

To use this function simply press fll at the main menu and respond to
the request for drive number. Immediately, all drives in your system will be
turned on, whether they contain disks or not, whether the doors are closed
or not. The light on the drive you have selected will illuminate (this light
merely indicates that the drive in question is being addressed) and the head
will be restored to track #0. All·drive motors will remain on until you press
!:J;lf!1:4 to terminate the function, at which time you will be returned to the
main menu. The data that follows is a discussion of disk-related problems
and ways in which some of these problems can be cured.

____ ULTRA UTILITY SERIES ___ _

c !:t

::a
 ,. c -t
 -,. - -t -c
 "' Ill ::a
 -Ill "'

.....

W
A

R
N

IN
G

!
1

..
.,

.

E
LE

C
TR

IC
A

L
C

O
M

P
O

N
E

N
TS

A

T
 R

E
A

R
 O

F
D

IS
K

 D
R

IV
E

i

-
-
-
-
-
-
-
-
-
-
-
-
-
-
P

U
L

L
E

Y
 W

H
E

E
L

I
I

-
-
-
-
-
-
-
-
-
-
-
-
-

· R
/W

 H
E

A
D

 V
IE

W
IN

G
 W

IN
D

O
W

-
-
-
-
-
-
-
-
-
-
-
-

S
TE

P
P

IN
G

 M
O

TO
R

P

U
LL

E
Y

 B
A

N
D

FL
Y

W
H

E
E

L

lJ
A

D
JU

S
T

M
E

N
T

 S
C

R
E

W

,.
-
-
-
i=

::
:I

:=
=

:©
::

r
-
-

:
--~

-\
--

-.
 i

I
i

i
F

I

l :2

::!

I
I

f ©
 t

~
.

~

o&

_
o

f
O

o
o

0

- -
·~

. E
D

G
E

 C
A

R
D

 (
A

T
 R

E
A

R
)

QISKEY assumes that you own standard Radio Shack (T.E.C.) disk
drives, which, when properly tuned and maintained, are very reliable.
Because of the mechanical nature of your drive units, maintenance must be
performed manually. Fortunately, the process ls very simple, though
somewhat lengthy. You will need a few pieces of equipment to do the job
properly.

1. A fluorescent lamp
2. One ordinary flat-blade screwdriver approximately % inch wide
3. One Philips screwdriver approximately ,;1 inch wide
4. A box of Q-Tips TM

5. A "Drive Head Cleaning Kit," available at your local Radio Shack
Store

NOTE: This routine requires you to remove the external cover
of your disk drive unit, which may void the warranty
provided by Radio Shack.

The main reason for keeping a drive unit properly tuned (aside from
just taking good care of your equipment) is to avoid the dreaded 710
ERROR. During disk access, occurrence of this error indicates that, for
some reason, the computer is unable to locate a sector that is or will
become part of a specified file. Isolated cases cannot be immediately
attributed to a faulty drive, bu~ it is better to be safe than sorry. (As we
proceed, please refer to the accompanying diagram to get a better
understanding of what is happening.)

There are eight ways in which your drive can cause you to suffer
repeated 710 ERROR's.

1. Dirty electrical contacts on the cable, disk-drive controller,
computer, or drive unit

2. Incorrect or fluctuating drive rotation speed
3. Dirty read/write head
4. Slippage of the flywheel or pulley motor due to dirt on the pulley

band
5. Freezing of the read/write-.. head, usually due to dirt or poor

lubrication
6. Electrical malfunction within the drive unit itself
7. Defective ROM in the disk controller cartridge
8. Misaligned read/write head

The first four of these problems are easily fixed, and probably account for a
good 90% or more of all disk-related 710 ERROR's. If you have any reason

____ ULTRA UTILITY SERIES ___ _

to suspect any one of the last four causes, then take your disk drive to the
nearest Radio Shack Computer Center for repair or replacement; do NOT
attempt to fix these problems yourself.

Since the majority of the problems seem to involve dirt (tobacco smoke
is the worst offender, and dust places a close second), we will first address
ourselves to the subject of cleaning the drive. Logically, we should proceed
from the outside to the inside. This means that we start with the electrical
contacts on the edge cards and the connector plugs. And this, of course,
means that the entire computer system must be TURNED OFF.

Disconnect the controller from the computer, and the cable from both
the controller and the drive unit. Using a cotton swab dipped in high grade
denatured isopropyl alcohol (the same stuff that you find in your Drive Head
Cleaning Kit), scrub down each of the edge cards (2 on the controller and
one on the drive unit itself) on both sides. When the cotton swab gets dirty,
replace it. You can consider the contacts to be clean when the swab
re~ains white. Follow the same procedure for the connector plugs on the
cable as well as the plug inside the cartridge slot on the right side of the
computer. The connector plugs are a little more difficult to clean without
disassembly. If you ·have problems in this area, try using an old toothbrush

I

soaked in the alcohol. Don't worry about excess alcohol - it will evaporate
without leaving a trace. When you are satisfied with the cleaning job,
reconnect all of the apparatus.

Before powering up the system, remove the external cover of the disk
drive by removing the two screws on each side of the drive's base. (Do NOT
remove any screws from the bottom of the drive - just the 4 screws around
the perimeter.) When all four screws have been removed, the cover will
slide upwards to reveal the mechanical and electrical "guts" of the unit.
Familiarize yourself with the left .side of the drive by referring to the
diagram. When you are ready, power up the system in the normal way, and
load in the program. (From here on, "turn the drive ON" means to select
option m from the main menu and respond to the prompts; "turn the drive
OFF" means to press !:JjJf;1:i and return to the menu.)

Using the shaft of a cotton swab between the pulley band and the
flywheel, carefully remove the pulley band (think of it as a bicycle chain)
and turn on the drive. Dip the swab in alcohol and thoroughly clean the
drive motor pulley wheel where the .,pulley band makes normal contact.
Turn off the drive and get the excess dirt off the flywheel by manually
rotating it and holding a swab next to its contact surface. Replace the pulley
band by starting at the pulley wheel, placing the upper strand of the pulley
band on the surface of the flywheel, holding it in place with your finger, and
slowly rotating the flywheel until the band slips into place.

____ ULTRA UTILITY SERIES ___ _

' Now you can tum the drive unit on again and take advantage of the
flywheel rotation to clean the flywheel itself as well as both surfaces of the
pulley band. Take a new swab and touch it to the upper and lower surfaces
of the pulley band with just enough pressure to ensure that you are, in fact,
removing dirt (and nothing else!) - use as many swabs as you need until,
as before, the swab remains white on contact. Follow the same procedure
for cleaning the contact surface of the flywheel.

While you are doing this, there is no reason why you can't place one of
your head-cleaning disks, properly soaked with alcohol, into the drive unit.
Close the drive door and make sure that the motor is on. You will hear a
noise similar to the sound of an electric sander - don't worry about this, it
is perfectly normal. Leave the drive door closed for about 30 seconds - this
should be enough to get the head completely clean - and then remove the
disk and put it away for future use.

By now, your disk drive should be as clean as it's ever been, and now is
the time to perform the adjustment to ensure your drive is operating at
optimum speed. Place an ordinary disk in the drive and close the door.
Make sure the drive is on and settled into its rotation speed. Place your
fluorescent lamp in a position where the light will shin~ on the strobe
markers around the perimeter of the flywheel, but will not be in your way.

Pay close attention to the "apparent motion" of the strobe markers
(outer ring for 60 Hz operation: inner ring for 50 Hz operation.) If your drive
unit is tuned to the correct speed, the markers will appear to be stationary.
If the strobe markers appear to be moving in one particular direction, use
your flat-blade screwdriver to slowly turn the yellow adjustment screw in
the opposite direction until strobe movement appears to stop. This is a
delicate operation, and may require several attempts before you get it just
right. When all "apparent motion" has stopped, take out the disk and put in
another one, just to ensure that the speed remains constant. Try several
different disks until you are satisfied that you have found the right
adjustment setting.

Here are a few tips that will make your disk drive (and you) breathe a
little easier.

1. Keep the drive clean and well adjusted at all times; the entire
process described here, which should be performed about once a
month, takes only about 20-30 minutes and may save you many
hours of heartache, not to mention many of your hard-earned
dollars I

2. Clean the read/write head frequently, at least once a month, but
more often if you use the drive a lot.

____ ULTRA UTILITY SERIES ___ _

5. Avoid jarring the drive unit at any time as this may be the cause of
Incorrect rotation speed. When you ,open the drive door, don't
simply press the release mechanism and let the door snap open;
rather, use a spare finger to hold the door so it opens slowly .

. 4. Keep dust away from the drive unit by covering it when it is not in
use.

6. If the drive speed seems to fluctuate no matter how much
cleaning and adjusting you do, try using a separate power supply;
if this doesn't solve your problem, then take the unit in for repair.

6. Treat your disks with as much care as the drive unit itself. Keep
each disk in its own envelope when not in use and, if possible,
store your disks in the upright position in their own file box (no
more than 10 to a box).

If you observe the above procedures on a regular basis and ensure that
your drive is in its best condition, you will probably discover that most of
your disk-related problems will disappear. But if you find that problems
persist in spite of the loving care you devote to your machine, you may have
some type of defect that only the experts can fix - don't hesitate to take
your machine in for repair if this is the case.

____ ULTRA UTILITY SERIES----

APPENDIX A

THE COLOR COMPUTER DISK SYSTEM

This section is provided for those who may find Chapter 11 of the
DISKEY Manual a little confusing. Most of the information here has been
obtained through experimentation and trial and error; therefore, it is neither
conclusive nor exhaustive.

When you format a disk with the DSKINI command, the computer
does some writing to the disk in order to organize. Once this is
accomplished, the disk can be considered to contain 35 tracks, numbered 0
to 34.

Each track is further subdivided into 18 sectors (numbered 1to18, not
0 to 17) of 256 bytes each. At the same time, each track (except Track 17) is
divided into 2 granules. Thus, each granule comprises 9 sectors. For a
better grasp of the relationships between tracks, sectors, and granules, see
Diagram 1.

Granules are numbered from 0 to 0/ and are used by the disk controller
to determine where a file is stored. Each file must occupy at least one
granule; furthermore, if your file happens to occupy the equivalent of 9
sectors plus 1 byte of computer memory space (a total ~f 2,305 bytes), it
will take up 2 full granules (18 sectors) on the disk. In general, then, the
amount of disk space required by your file will be based upon the amount of
memory space rounded upwards to include all of the current granule being
written to.

For Track numbers below 17, the corresponding granule number can
be determined from the formula:

GN = 2 * TR + INT(S/10) [GN =.granule number; TR= track
number; S = sector number]

For Track numbers above 17, the corresponding granule number can
be determined from the formula: ·

GN = 2 * (TR - 1) + INT.(S/10)

Considering that conditional expressions are evaluated to - 1 if True
and to 0 if False, these two formulae can be combined as follows (as long as
TR < > 17):

GN = 2 * (TR + (TR) 17)) + INT(S/10)

(Your computer will accept this type of formula, by the way, and return
a valid result! Try itl)

____ ULTRA UTILITY SERIES ___ _

Using this formula, you can see that all sectors from 10 to 18 in Track
14 will be included in Granule Number 29. Similarly, Granule Number 44 will
contain sectors 1 to 9 in Track 23.

DIAGRAM #1

COMPUTER ORGANIZATION OF DISKETTE

o~Scf 0''8S 8g 0 ... Nf"\4"'..01"--G _.
I I I I I I I I I I

I
I

I I I I I I I I I I
I I
I I

I
\

\
\

\
\

\
\

\
'

1
I
I
I

l I
I I
I I
I I

\
\
\
\
\
\
\

I
I

\ \ I I
\ \ I I

\ \ I I
\ \ \ I I

\ \ I I
\ \ I I

\ \I I

I
I

I

I
I

, I/ I

~~I - - - - - I I f- - - - -11..-...L..--'
~ . ,

-

____ ULTRA UTILITY SERIES----

The Oirectory

Track 17 is reserved exclusively for your Disk Directory, and only
Sectors 2 through 11 are used for this purpose. Sector 12 contains the file
allocation table and Sectors 3 through 11 contain the actual directory
entries.

Let's look first at the way the computer sets up the directory entries.
There are a total of 9 sectors dedicated to entries, and, since each entry
occupies only 32 bytes of disk space, this means that there's room for 8
entries per sector, for a total of 72 possible directory entries. Realistically,
however, since each file requires at least one granule of disk space, there
can be no more than 68 unique files - that is, by logical extension, no more
than 68 unique directory entries.

DIAGRAM 2

The directory entries have a special format:

Byte# •J¢ 1234561(s 9i.0(1~12J13I 1415f16 i1 ••• 311
. -----""'~~~-------'

1. Filename f i r .
2. Filename Elctension___J .

3. File Type-------------'-

4. ASCII/Binary Flag --------'

5. First Granule in File--------

6. # of Bytes in Last Sector ----------

7. Not Used--------------------'

The first 4 items on this list are self-explanatory (and fully explained in
your owner's manual) - you see them every time you type [:JC~ Willl· Item
6 merely tells the computer how many bytes of the last sector contain
actual file information.

____ ULTRA UTILITY SERIES ___ _

Item ~ on the list proves to be the most interesting piece of information
from a programmer's point of view. It also happens to be the most
confusing! Byte 113 of the directory entry performs two functions.

1. It tells the computer exactly where to look (by granule number) for
the first segment of the file; .

2. The computer must also look into the file allocation table (Sector
#2) at the position named in byte #13 of the directory entry to
determine if the specified granule is the only one, or, if not, where
to find the second and subsequent granules in the file.

'

Now, of course, you are thoroughly confused, right? Well, never fear!!
Take a look at the following diagram:

Stx;TCE 2

(~ Page)

SU:TOft 3

U Page)

DIAGRAM 3

FILE ALLOCATION TABLE

FILE AL!reATION TABLE

¢¢ ¢1 ¢2 ¢3 ¢4 ¢ 5 ¢6 ¢? ¢s ¢9 1¢ 11 12 13 14 15

m ----------------
¢16
¢32 t'-2~~~--------_-_-_-_-----_~
¢413
¢64

¢e4
¢96
112

m
¢16

¢32

¢LJ3
¢64
¢8¢
¢96
112

-t--------=-----------Li

DIREX;TOOY S~TCR

FILENAME FN F.X'f AB FG Bll.S

¢¢ ¢1 ¢2 ¢3 ¢4 ¢5 ¢6 ¢7 ¢8 ¢9 1¢ ll 12 13 14 15

DllDDDDDD~~D'/ll'/11 2~ M~
'/II '/II ¢¢ ¢¢ ¢¢ ¢¢ '/4 '/Ii '/II ¢¢ '/11 '/II ¢¢ ¢¢ ¢¢ ~ } Entry II l

Entry # 2

Entry # J

----------------1
---------------- Entry#4

____ ULTRA UTILITY SERIES ___ _

-Suppose there is only one file on our disk and, therefore, only one
directory· entry. (To avoid confusion, the elements of sector 2 will be called
1 'boxes" and the elements of sector 3 will be called "bytes".)

The filename and extension are not important. Suffice to say that we
have here a BASIC program stored in binary. Byte #13 tells us that program
storage begins at granule #32. (20 Hex).

When loading the program, the computer will first check box 32 (line 1)
to see where it must go next. In this case, box 32 contains the number 21
Hex (33 Decimal), so the computer knows that all of granule 32 must be
loaded into memory and that it must then move to granule #33. Before
loading granule #33, the computer first checks box 33 (line 2) and discovers
22 Hex (34 Decimal). Ahal Now the computer can load all of granule #33
because it knows there're still more data in granule #34. Then the computer
checks box 34 (line 3) and finds C1 Hex - which tells the computer that
granule #34 is the last granule in ih'e file and that only the first sector of
granule #34 is in use ("C" means last granule; "1" indicates only 1 sector);
furthermore, only 164 (A4 Hex) bytes in the last sector of the file (see line 4)

are in use (bytes 14 & 15 contain this information).

Trace through the diagram and read the above paragraph a few more
times - everything will become clear momentarily.

You may have noticed that granule numbers and box numbers
correspond on a 1-to-1 basis. This is because the first 68 locations
("boxes") of the File Allocation Table are in fact indices to succeeding
granules. You have probably also noticed that numbers contained in the
boxes (encircled) seem to run consecutively and are similar in magnitude to
actual box numbers - this is no accident. You'll find as you examine more
disks that the computer strives for efficient data storage by placing files as
close as possible to the directory itself and by. using consecutive or nearly
consecutive granules so as to minimize movements of the read/write head.

Notice also that the depicted organization takes you through a closed
loop - it starts at byte #13, moves into the file allocation table (from 1to68
boxes required) and ends up at bytes #14 & 15 of the entry. If this loop is
broken anywhere, a load attempt will .always result in an error - most likely
an ?10 ERROR.

Summary
1 . A formatted disk contains 35 tracks.
2. Each track consists of 18 sectors.
3. Each track (except track #17) consists of 2 granules of 9 sectors

each.

____ ULTRA UTILITY SERIES ___ _

4. Sector 2 of Track 17 is the File Allocation Table of the directory, the
first 68 bytes of which are used as index references to granules
having the same number designations. (Bytes 68 to 255 are not
used by the computer - except for "garbage collection.")

5. Sectors 3 through 11 of Track 17 contain actual entries in the
directory (8 per sector). Each entry occupies a space of 32 bytes, of
which only 16 are used by the computer.

RECOVERING KILLED FILES

The "Hex Display Mode" of the EXAMINE/EDIT DISK subroutine is
structured as per the diagram on page A-4. This display format is provided
primarily for looking at the Directory track of your disk, but it can be used
quite profitably for examination of any sector at all.

When you KILL a file, the computer does two things:
1. it writes a"()()" to byte number 0 of the directory entry (the first character
of the filename) but leaves the rest of the entry intact.
2. it writes "FF" to each entry in the File Allocation Table (Track 17 /Sector
2) associated with the file you are Killing. ·

All other data related to the file, including the entire contents of the
file, are left intact.

This makes the directory entry and all granules associated with the file
available for re-use. DISKEY has.made no special provision for retrieving a
Killed file, but if you haven't subsequently SAVEd something on the same
disk, you can retrieve your file as follows:

1. From the main menu, select option~ (Drive# of your choice, Track #17).
2. Move to Sector 3 (or whichever sector contains the entry in question)
and look at byte #13 of the directory entry containing the Killed file; this
will tell you which granule to look at first.
3. Trace through the disk until·you locate the end of the file, keeping track
of granule numbers (in CHRONOLOGICAL sequence) that are devoted to
the Killed file.
4. When all the infQrmation is compiled, return (using the arrow keys) to
Track 17 /Sector 3 and select ~it mode; enter an ASCII value
corresponding to an uppercase lener (41-5A Hex) at byte #0 of the Killed
directory entry, etJit and ~ite the new data to the disk.
5. Move into Sector #2 and enter the values determined in step 3. Make
sure you enter the values in the correct locations! (Use the diagram on page
A -4 for reference.)

This method will work for any Killed file, provided all data is intact
when you start. Optionally, you can use the RECONSTRUCT DIRECTORY

____ ULTRA UTILITY SERIES ___ _

option, but bear in mind that you will have to provide data for ALL the files
on your 'disk.

Summary

There is nothing really mystical about your Color Computer Disk
System, although at times it may seem that way. The information in this
appendix, if used in conjunction with your owner's manual, should provide
you with adequate background knowledge in system operation. Don't
worry too much if it all seem like Greek to you right now. As you examine
(and modify) more and more disks, everything will eventually begin to make
sense. Pretty soon, you'll not only be able to retrieve "lost" data, but you'll
also be able to use OISKEY as a serious debugging tool.

____ ULTRA UTILITY SERIES __ _

APPENDIX B

NOTES ON FILE STRUCTURE

If you have ever attempted something like LOADM "PROGRAM"
when "PROGRAM" happens to be a BASIC program stored in binary, you
will have discovered that the computer can differentiate quite nicely
between file-types. The consequence of such an attempt would likely be a 7
NE ERROR or perhaps a 7 10 ERROR, which tells you that the computer
cannot be fooled so easilyl

And right now, you're sitting there smirking and saying, "Of course
that'll happen - the information is right there in black and green (sic!) in
the directoryl" That's quite true - but here's a challenge for you. Write a
short BASIC program, save it on disk, use the EXAMINE I EDIT subroutine
of DISKEY to change the contents of byte #11 of the corresponding
directory entry from 00 to 02, and then try to LOADM "PROGRAM". Now,
when the computer checks the directory, it finds out that there is indeed a
machine-language program named "PROGRAM". But what happens? One
of two things:

1. You get an error of some type, probably 7 FS ERROR or 7 10
ERROR.

2. The program loads but will not RUN, and if you are gutsy enough
to try EXEC, in all likelihood, the computer will wander o~ into
outer space, never to return (except by turning off the machine)!

All of which proves that there is more to file storage than simply
dumping data onto a few sectors and placing a "map" in the directory. As it
turns out, each FILE-TYPE has a different storage format.

BINARY BASIC Programs

As mentioned in Appendix A, when LOADing, the computer will first
check the directory entry and file allocation table to determine which
granules are in use and how many bytes of the last sector are part of the
program. Then the computer will look in the first sector of the first granule
of the program file and check byte # 0, which must contain FF Hex; if not,
LOADing will stop and you' ll get an 7 FS ERROR (bad file structure). The
"FF" in byte # 0 is a flag that confirms that the file is in fact a BASIC
program stored in binary.

Bytes # 1 & 2 of this sector tell the computer how much memory space
is required when the program is LOADed. If we use the example from
·Appendix A, you'll remember our program occupied all of 14 sectors and
164 bytes of the 15th, for a total of 14 • 256 + 164, or 3748 bytes of disk
space. Bytes# 1 & 2 of the first sector of the sample file would contain the

number 3745, three less than 3748. Why~ Because the first 3 bytes of the
file are hot actually LOADed anywhere - they are simply control bytes for .
the operating system.

Bytes I 3 & 4 contain the address (a pointer, if you will) of the next
program line that will be executed after the first one. (A bit of PEEKing into
program memory will reveal to you that, even though your program LISTs
in order by ascending line numbers, the program lines may actually be
stored in quite a different order. The first two bytes of every program line
contain a pointer to the next line, which may, under such a system, be
several thousand bytes away in memory. This is an example of a "linked
list."}

Bytes # 3 & 4 are the first two bytes that will actually be loaded into
program memory, and some knowledge of your computer's memory layout
will help you to predict exactly where they will load. In the case of a 32K
Disk system after a normal power-up (automatic PC LEAR 4), the first
available program location will be 9729 decimal (2601 Hex), which is where
program loading will begin, unless you change the PCLEAR setting or use a
different Fl LES value.

Take a look at the following diagram, which represents a BINARY
BASIC program of unknown length, as it would be stored on the disk:

DIAGRAM 4
.• .

Addr e!:s of F 4 26 l ~~-~=-=-===-=--=-:=-==----First line If

next line # ;- - - - - - - - _First &.SIC
Amt of mem _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Comiand

required .
Binary BASIC •••••••••••Program of unlo'lown length •••••••••••
Flag F.nd-of-line

Marker

F.nd-of-prograi
Marker

Except for the first 3 bytes, everything coincides exactly with the way
in which programs are stored in memory. (Notice that the computer does
not insert spaces after line numbers in this format - all spaces are inserted
when the program is converted to ASCII format for LISTing or SAVEing.)
Remember that all pointers are SA VEd exactly as they existed in memory.
Subsequent LOADs of a given program will cause the computer to apply an
offset to every address in the file if you are loading to a different PC LEAR
configuration than when the program was saved, but, of course, the disk
contents will not be affected.

____ ULTRA UTILITY SERIES ___ _

Machine Language Programs

Whereas a BINARY BASIC program file reserves the first 3 bytes for
system controls, a machine-language program file reserves the first 5 bytes
snd the last 5 bytes of the file, for a total of 10 system control bytes.

Byte # 0 contains a machine-language file flag, set to 00 instead of FF.
Bytes # 1 & 2 contain the amount of memory space required for the file
when LOADed, as before. This number will come to 10 less than that
specified by information in the directory, because, once again, none of the
control bytes are actually LOADed into program memory. Bytes # 3 & 4 tell
the computer where to start LOADing the program. No end address (such
as that specified in a SAVEM command) is required because the computer
just continues LOADing until it reaches the end of the file. The last 5 bytes
of the file contain a triple byte end-of-file marker - FF 00 00 - followed by
two bytes which contain the address at which program EXECution will
begin.

(In actual fact, this triple byte marker may be a link to additional data or
program information which will ORiGinate at a new location in memory·
when loaded. If this is the case, the "FF" will be replaced by "00", the
following two bytes will be a count of how much data to load, and the so­
called "EXEC" address will now be the new "LOAD" address.)

The following diagram will help to clarify the situation:
'

DIAGRAM 5

MIP Flag~Il Y'!- - - - - - - - - -

~~~~-------------
required 

LOADing 
Address ••••••••••• Program of unknown length •• .' •••••••• 

BASIC Program in ASCII 

First Program 
Byte LOADed 

End-of-tile 
Marker 

EXEX:: Address 

In this type of file, every character in the program, including each digit 
of each line number and each letter of each BASIC command, is converted 
to its ASCII equivalent and SAVEd in that format. 

There is only one peculiarity about the ASCII format - the very first 
byte of the file always contains OD Hex (carriage return). Additionally, every 
line number is followed by a space (not the case for binary BASIC program 

____ ULTRA UTILITY SERIES ___ _ 



files), ar:id every program line ends with a carriage return. This means that 
the entire ASCII file is bracketed by carriage returns. 

Data Files 

The organization of other data files is based primarily on how you have 
chosen to -~ructure them - i.e., how you u~ FILES, FIELD, and other 
Disk System commands. Essentially, though, from what can be "seen" in 
data files, there are no control bytes apart from those contained in the 
directory sector and the file allocation table. In other words, byte I 0 of your 
data file contains your first byte of data, whatever it might be. 

Summary 

Each type of file has its own unique storage format over and above that 
specified in Track # 17. If you have a good grasp of this information, you 
should be able to construct all types of files from scratch, without first 
writing the file to memory. 

NOTE: Don't get locked into the belief that values contained in byte I 
0 of your file are always control values. They are merely a 
confirmation of information in the directory. Remember, 
there's no reason why a simple data file cannot contain 00, OD, 
or FF in byte # 0. 

____ ULTRA UTILITY SERIES ___ _ 



APPENDIX C 

CHARTS AND TABLES 

CHART 11 

Condition of Track-Sector Combinations 
------------------------------- -----------------------------

Tr'c-d I ~ ) 

I ·, ' U) 
- ---- -- -··------ --------- --- --- --------------- -------------

----ULTRA UTILITY SERIES ___ _ 



CHART·n. 

Track-Sector Data 
--------- ---------- ---------- ----- ----- ------- ----- ---
TraclCs> Sector<•) Granul• • Fil• File For~•t ~r•n BIL 

N•m• T~P• CAii> ~os'n 

--------- ---------- ---------- ----- ----- ------- ----- ---

____ ULTRA UTILITY SERIES ___ _ 



CHART 13 

Assumed Layout of Directory 
--------- ----------- --------- --------------- --------- ---
ile ~•me Fite TyFe Stor•q~ Gr•nulEs U•ed s~ctors BIL 

For~dt <Chronolo~ic~l> L•st Gr•n 

--------- ----------- --------- --------------- --------- ---

____ ULTRA UTILITY SERIES ___ _ 



Table 11 - BASIC TOKENS (Lexicographical Order) 

• 
+ 

/ 
<. 

A ·= ·· - ~ 

ATl-1 
"'Lil• I(: 
f .M•:'I lJF 
CHf.• 
cu;ct.E 
CLE,:,f' 
cu.1.;c1 
•:L 1.t~E 
CLS 
~C•L•.•f; 
c,·,r,IT 
':1.1P' 

1:'\'fJ 
(/-\} M 

DEF 
CiEL 
0111 
CIR 
DL1.1AD 
OliML.I 
ORI 'JE 
DShIS 
C•SI· I NI 
0:1,.:.s 
EDIT 
ELSE 
END 
E•)F 
E)EC 
EXF 
FIELD 
Fii.ES 
FIX 
FN 
F•)R 
FFEf' 
GEl 

9.:; 
,.,o 
AE 
AC 
"E 
r .. 
P.l 
p._: 
FF82 
1.1{) 

Ff..:.7 
FF6r. 
FF<t .. 
/.,l 
L:L 
FF8P. 
~~ 
95 
en 
~/., 

c;E 
(1 
c;3 
DE 
FF'i5 
qs 
FFA2 
Go 
p.7 
IS 
SC 
CE 
CA 
Cb 
CF 
OF 
DC 
E0 
f.6 
3..\8'+ • 
8~ 
FF6C 
A2 
FF'i7 
00 
01 
Ff 98 
cc 
so 
FFAJ 
c .. 

COt'll1ANO 

\i(; 

HE•·s 
IF 
IUl·E (S 
Im·•JT 
rtr·5TR 
UH 
J•::·, ::.n < 
t ILL 
LEFT• 
LEN 
LET 
LIIJE 
L1£T 
LLI~T 
L•)AD 
L•)C 

l.•)G 
LSET 
NEM 
NER·~E 

MIO• 
f1Kf It 
MuTOR 
UE>T 
f-IElJ 
f.i(1T 
OFF 
vu 
OFEN 
(If( 

PAINT 
P(LE"f; 
PCL:J 
PC(>F Y 
FEEh 
PLAT' 
PNl)uE 
FvHH 
POhE 
FOS 
PF(>ltH 
FRESET 
PRINT 
PSET 
PUT 
RE~O 

REN 
REflANE 
J;ENUN 

81 
FF9C 
8S 
FF9~ 
89 
FF'flE 
FFEl 
FF80 
o: 
FF6E 
FFS7 
1.,; 
p.f 
94 
9f. 
03 
FFA .. 
FFM5 
FF'i9 
D4 
FF93 
OS 
FF9'3 
FF Ao 
9F 
8B 
qb 
AS 
AA 
ea 
99 
B1 
CJ 
C0 
f.c 
C7 
FF96 
Clfl 
~8 
FF91 
92 
FF9A 
FFA0 
P·E 
87 
PD 
cs 
80 
S2 
06 
CB 

CClf1MANO 

RESET 
RESTOF-E 
RETURN 
f(JuHTS 
RND 
RSET 
f(UN 
'SAVE 
SCREEN 
SET 
SGN 
SIN 
St\IFF 
so•Jrm 
SG;R 
STEP 
STOF 
STRI 
STf'INGS 
SUB 
TAP· 
TAN 
THEN 
TIMER 
TO 
TROFF 
Tli(1N 
UNLOAC 
USIUG 
USR 
VAL 
VARFTR 
VEf'IFY 
WRITE 
1' 

TVkEll 

90 
SF 
90 
FF8F 
FF64 
07 
GE 
08 
P.F 
9(: 

FF80 
FF85 
A) 
AO 
FF9£ 
Alfl 
91 
FF83 
FF Al 
Ab 
A4 
FF96 
A7 
FF9F 
AS 
PB 
1'7 
DB 
CD 
FFBJ 
FF89 
FF9D 
01-\ 
09 
AF 

··.:JA" (colon• 11 . tf,.; " ELsF.:· toi~n (JA84) is SUPPlted t."" 8.C.SF 

___ _ ULTRA UTILITY SERIES ___ _ 



Table n - BASIC TOKENS (Numerical Order) 
------- ----------- ------- ----------- ------- -----------TOf\EN COHN Arm TC*<EU COl1MAND TC*\Et-4 FUNCTIOt.f ------- ----------- ------- ----------- ------- -----------80 FOR f.J * FF&0 SGU 

01 GO e .. < FF91 JtJT 
sz REM p.5 DEL FF32 AiS 
SJ • f.b EDIT FF93 VSR 
94 ELSE 87 TRON FF94 "''° 85 IF BB TROFF FFB5 SIN 
06 DATA B9 DEF FF86 FEE•\ 
S7 PIUfH BA LET FF87 LEN 
88 Ot' f B LIUE FF98 STRS 
09 Ir'PUT BC FCLS FF89 VAL 
BA END f.D PSET FF0A ASC 
SP· NEXT r,E PRESET FFBE· CH~S 
SC DIN f.F SCf;EEN FFSC EOF 
BO RE~D C0 PCLEA" FFSO JOYSTK 
BE RUN Ct COLOR FFSE LEFTS 
BF RESTOF\E C2 CIRCLE FFSF RIGHTS 
q0 f;ETURN C3 PAINT FF90 MIDS 
91 STOP C4 GET FF91 FOltH 
92 POkE cs PUT FF92 INhEYS 
93 CONT Cb ORAt.I FF9J P1EM 
94 LIST C7 P•:OPY FF94 ATN 
95 CLEAR ca PM,)OE FF95 cos 
96 NEW C9 PLAY FF96 TAN 
97 CLO AD CA OLOAD FF97 EXP 
98 CSAVE Cf'. F\ENUM FF98 FIX 
99 OFEN cc FN FF99 · LOG 
9A CLOSE CD USING FF9A POS 
9B LL I ST CE DIF\ FF9B sm; 
9C SET . CF DRIVE FFC~C HEXf 
90 RESET 00 FIELD FF9D VAF\PTF\ 
9E CLS 01 FILES FF9E INSTR 
9F NOT OR 0 2 J..ILL FF9F TINER 
A0 SOUND OJ LOl.D FFAO FPO INT 
Al AUDIO o.:. LSET FF Al STRH,GS 
A2 EXEC D5 · MCRGE FFA2 CVN 
AJ Shi FF 06 RENA11E FFAJ Ff;EE 
A4 TAf. 07 f<SET 'FFA4 LOC 
AS TO DB SAVE FFAS LOF 
Ab SUB D9 WRITE FFA6 tihra 
A7 THEN DA VEf'IFY FFA7 AS 
~8 NOT OB UNLOAD 
AC/ STEP DC DSt\INI 
AA OFF DD BhCt\UP 
AB + DE COPY 
AC OF OSK JS 
AO • E0 DSht)S 
AE 
AF t 
B0 Atm 
p.1 OR 
r.~ . >. 

------- ----------- ------- ----------- ------- -----------

____ ULTRA UTILITY SERIES ___ _ 



Table 13 - CHR$/POKE Comparison 
------ ------- ------ ------- ------ -------•• CHAS FOKE •• CHRt POt\E •• CHAt P<:>KE ------ ------- ------ ----·--- ------ -----

00 a CJ) ~p + + (J) 56 v v 
01 A <I) 2C ' ' Cl) 57 "' w 
" ~ ! C I > ~D :... <I> 58 )( )( 

0J fRK c < I > ~E • (J) 59 y 'f 
0 .. D • f) '-F I I CI> 5A z z 
05 E (J) 30 " " CI > 5B ( ( 
0b F < I> 31 1 1 CI> 5C \ \ 
"7 G ( J ' 3-~ 2 2 < I > 5D ) l 
08 H < I > 3:! J 3 CI > 5E • t 

·09 I (J) :!4 4 4 (J) 5f' ~ ~ 

OA J < I > 35 5 5 <I > 60 a <I> SFC 
0B t\ < I > 36 6 6 (J) 61 A <I > 
0C CLR L c I > 37 7 7 (J) 62 8 <I> • 
00 ENT H < I > J G 8 8 <I> 63 c \I) • 0E N < I > 39 9 9 (I> bit D <I) • 0F 0 < I > JA . I (I> 65 E <I> 4 . 
10 F < I > 3f. ; ; <I > b6 F CI > ' 11 Q <I> JC < • (J) . 67 G <I) 
12 f( < I > JO = • <I > 68 H (I> ( 

13 s < I > JE ) ' ,, <I > 69 I <I) ) 

14 T < I > JF ? ? <I) 6A J <I> • 
15 u ( I > 40 a • of . K <I> + 
16 v < I> 41 A A 6C L <I > ' 17 w C I > 4; p. f . 60 t1 <I> 
18 x (J) 43 c c bE N (]) 
19 y ( I > 44 D D 6F 0 <I> / 
1A i < I > 45 E E 70 p <I> " 1B [ (I > 4t> F F 71 Q <I> 1 
lC \ < I > 47 G G 72 R < I > 2 
lD ) ( I > 48 H H 73 s < I > J 
lE .. <I > 49 I I 7'+ T <I> 4 
lF .. < I > 4A J J 75 u <I) 5 
::0 SPC SPC\I) 4B •< t-: 76 v (I> 6 
;: 1 <I) 4C L L 77 

"" 
< I > 7 

- ··") ·- • • < I> 40 H M 78 x < I> 8 
::J • .. < I > 4E N N 79 y < I> 9 
_:;4 • • <I) 4F 0 0 7A z ( I > . . 
::'5 .. 4 < I > 50 ,. p p 7P. [ <I) ; 
°26 & & <I) 51 Q ~ 7C ' <I) < 
- -, • • • < I > 52 R R 70 J <I > = 
~3 ( (I> 53 s s 7E + < I > ' .• 
2 9 ) < I > 54 T T 7F ~ < I > ? 
...... ' .,,., • • < I > 55 u u 

------· ------- ------ ------- ------ --------
r.i .. TES: 1. The notc. t ion •<I >9 indic•tes tt1•t the specified 
ct1.l r acter wi 11 .appear on the screen in Inver5e Video (9reen on 
a bl ac~ b.a ckground). 

~ •• All c t1c.racter& from 80 to FF Hex <128 to ~55 Dec i " ' "' 1 
a r e SFecial 9re1phics character so defined b1i1 P.ASIC. Sl:?e YOL•r 
pr ogr .arr.ffiing rr.anu•l tor det.;dls. 

----ULTRA UTILITY SERIES ___ _ 



Table 14 - One-Byte Hexadecimal to Decimal Conversion . 
----- --~-- ----- ----- ----- ----- ----- ----- -----------HEX C·EC HE:< DEC HEX OE~ HE>. DEC HE:X DEC ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
c~ D 34 5~ 67 10J '!A 154 CD ~'15 
"1 I 35 5J b8 104 qE 155 CE ~06 
C2 -. J6 54 69 105 fj~ 150 CF ::01 .... 
0::! J 37 ~s bA 106 90 157 00 2"8 
~ .. 4 Jl3 56 6I 107 c;E 158 Dt ;o; 
cs 5 39 57 eC 108 9F 159 o:: ~10 
0b 6 Jr\ 5B 60 HH AC 160 03 '"11 
07 7 3B 59 6E llD Al led D4 21~ 

.08 8 JC 60 6F 111 A~ 162 05 21J 
0q 9 JD 61 70 11:: AJ lbJ O.:, 214 
CA 10. JE b:: 71 113 Ai+ 164 07 ::1 s 
~E- 11 JF 63 72 114 AS 165 [,3 2 16 
0C l~ 40 64 7J 115 A6 lb6 09 ~ 17 
co 13 41 65 7'+ 116 A7 lb7 DA ~lS 
CE 14 42 66 75 117 AB 168 OB ::lq 
0F 15 43 67 76 118 A9 169 DC 220 
10 lb 44 6S 77 119 AA 170 DC ~21 
11 17 45 69 7S 120 AP· 171 DE 2-.., ·-12 18 46 70 79 12 1 AC 172 OF 223 
lJ 19 47 71 7A · .. 122 AD 173 E0 2~1t 
14 20 48 72 7B 12J AE 11 .. El 2~5 
15 21. 49 73 7C '124 AF 175 E:: ::!2b 
16 22 4A 74 70 125 B0 176 EJ 227 
17 2J~' 4B 75 7E 126 I·l 177 E4 223 
18 24 4C 76 7F 127 ! 2 178 ES 229 
1q 2s" · 40 77 S0 12S p.3 179 E6 ~30 
lA 2b 4E 78 Bl 129 £4 1S0 E7 2 J1 
1B ~7 4F 79 S2 130 BS 1S1 ES 232 
lC 2S. 50 60 SJ 131 f·b 182 E9 ;33 
10 29 51 Sl S4 132 B7 183 EA 234 
1E 30 52 82 SS 13J P.S 1S4 EB 235 
lF Jl 53 83 S6 134 B9 1S5 EC 236 
2 0 J2 54 S4 S7 135 P.A 1S6 ED 237 
:: 1 JJ 55 85 S8 136 IB 1S7 EE 2J8 
2 2 34 56 S6 S9 137 BC 183 EF ~JCT 
23 35 57 S7 SA 138 BO 1S9 FC 240 
::_4 36 SS sa ap. 139 t -E l c;c Fl : ... 1 
~5 37 59 89 SC 140 BF 191 F~. .:. ~42 
2b JS SA 90 SD 141 C0 1q2 FJ 

~ ::.1 39 51 91 SE 142 Cl ,q '3 F4 
28 40 . SC 92 SF 143 c::. 194 F5 245 
::9 41 SD 93 90 144 CJ 1c;s Fo 246 
2A 42 5E 94 91 145 Cl+ 196 F7 2 .. 1 
21. 43 ~ 95 92 146 cs 197 FS 248 
2C 44 60 96 93 147 C6 198 F9 2-+9 
2D 4S 61 97 94 14S Ci 19c; FA ~(O 
2E 46 62 98 95 149 ca 200 FP. 25l 
~F 47 6J 99 96 150 C9 2 01 FC ~5~ 
30 48 64 100 97 151 CA 2 0 2 FD 253 
31 49 65 101 98 152 CP. 203 FE 254 
3; 50 66 102 99 153 cc 204 FF 255 
33 Sl 

----- ----- ----- ----- ----- ----- ----- ----- ----- -----

____ ULTRA UTILITY SERIES ___ _ 



APPENDIX D 

SAMPLE RUN THROUGH 

If you are like most programmers, you are very careful with your disks 
- after all, you invest money in the materials, and time and effort in the 
programs you store on them. Unfortunately, though, sometimes things just 
go wrong. Like last night, just when you were so excited about applying the 
finishing touches to your all-singing, all-dancing 48K arcade game - you 
came home from a hard day, dumped your coat and boots, ran to your 
computer, loaded your program, and ... and .•• -got a 710 ERROR. Huh? 
.Oh, sure, I picked up the wrong disk - but, just to be sure ... (DD~ [£lID 
... grind ... grind ... grind . . . grind ... pause ... 710 ERROR. What 
gives? You go through 53 other disks and, in mounting panic, fail to find the 
program you're looking for. No doubt about it now - the program WAS on 
the first disk. You realize that without a listing or backup, you have only one 
alternative - rack your brain and try to remember what it was that you 
spent 192 hours and 43 minutes typing and editing. You contemplate 
suicide, but that seems just a tad melodramatic. Instead, you just sob .... 

. - . 

Sound familiar? Well, just hold on a sec! DISKEY might be able to 
help. Sure, maybe parts of your program are lost, but you've got nothing to 
lose by trying. And maybe you'll be able to recover enough data to 
sufficiently refresh your merT)ory so that you can recreate the program. It 
just may be that the program is completely intact, but your directory is 
fried. (You should be so lucky!) 

For the sake of simplicity, let's assume that one or two files have 
mysteriously disappeared from your directory, as is the case w ith the 
BACKUP copy you have ·made of DISKEY. We'll use this backup for the 
rest of this appendix, and you should now h~ve the disk in Drive 0 and the 
main menu on the screen. Be sure you have a copy of each chart in 
Appendic C - we'll be using these to log pertinent data. 

Step One 

Select option D at the menu. We'll take a look at the map of the disk to 
isolate any faulty sectors, if there are any. Since this is a brand spanking 
new program, and you have only made one backup, there should be no 
problem with the Disk Map - that is, your screen should display a 35 x 18 
rectangle of yellow blocks. If, however, you have any other indications at 
all, respond by pressing ti if necessary. (In this case, the presence of blue, 
green, or red blocks would probably indicate that your disk was flawed to 
begin with or that" your drive is incorrectly tuned. See the main text for 
details.) 

____ ULTRA UTILITY SERIES ___ _ 



If the Directory had been fried as I suggested at the start of this 
exercise, the map would likely show one or more blue blocks on Track 17, 
starting at Sector 2. We would normally log these sectors, and any others, 
as being unreadable. Since this is not the case in this example, just note in 
column 4 of Chart #1 that ALL of the disk is readable. 

Step Two 

No matter what kind of problem you may have with your disk, you 
should always examine the Directory track whenever possible. If it is intact, 
even if only in part, you will save a lot of time in the reconstruction process 
if you use whatever information is available. 

To simplify things for yourself, I recommend that you take a printout 
(from the EXAMINE I EDIT DISK routine) of each sector on Track #17 that 
contains readable information, starting with Sector #2. Keep the printout(s) 
handy for use later. 

Step Three 

The next thing to do is to determine where all data is located on the 
disk. We will do this by a· logical search sequence. Since BASIC organizes 
all files to begin in the first sector of a granule, it can be assumed that we 
need only search these sectors (Sectors #1 and #10 in each Track) to 
positively determine whether or not that granule contains data. 

From the menu, select option fl, Drive 0, Track IO and press~ 
when ready. The display will show a block of orange, indicating an empty 
granule. (Remember, this is only true if we're talking about "normal" 
BASIC files - there's no reason why some smart-alee programmer can't 
store pertinent data in, say, Track 32 I Sector 17 - but, in this example, 
you can trust mel) Use the down arrow to page through even-numbered 
granules (Sector #1 on each Track) until something other than an orange 
block appears on the screen. For this disk, orange blocks will continue to 
show up until Track #16. 

Continue paging until you reach Track #34, noting which tracks 
contain data and which do not. When you're finished the first pass, you will 
have recorded Tracks 16, 18, 32, 33, and 34 as bearing data. (Remember, 
Track #17 will come up empty in this sequence because BASIC does not 
use Sector #1. In any event, Track #17 does not constitute part of a 
granule.) 

Now use the right arrow to move over to Sector #10, and use the up 
arrow to page backwards through the odd-numbered granules (Sector #10 
on each track) until you return to Track #0. Remember to note again which 
granules contain data. When you are done, you will have logged Tracks 34, 
33, 32, and 16. 
____ ULTRA UTILITY SERIES ___ _ 



The information we have gathered so far indicates that data is 
contained in Granules 132to134 inclusive, as well as 162to167 inclusive. If 
you examine your printouts from the Directory Track, you will see that the 
File Allocation Table appears to be rather full. This is because the File 
Allocation Table for this disk has been severly modified to prevent 
accidental writing on the disk. In actual fact, the directory entry for 
"MASTER/BAS" requires only one granule, IJ?.. It would be logical to 

· assume that the data for the "missing" file(s) is contained in Granules 133 
and #34 (you can safely ignore Granules 162. to #67 for this exercise.) You 
can and should verify this information by performing a detailed analysis of 
Tracks #16 and #18, to find out exactly which sectors belong to each file. 
Chart #1 should look as follows: 

Condition of Track-Sector Combinations 

:---------------:---------------:---------------:-------------: 
Track<s> Sector <s> t Data <YIN> Readable 

: <Grans Below> : : <YIN> 
:---------------:---------------:---------------:-------------: . 0 - 15 Al 1 No : Yes . 

'-: .. <0 - 31> . . . . . 
16 . : St : Yes : Yes ' <32) r 
16 510 - 514 Yes Yes 

(J3> 
17 <Dir> 51 - 518 Yes <S2 &: SJ> : Yes 

18 51 - 56 Yes Yes 
(J4) 

19 - 34 All No Yes 
(35 - 67) 

:---------------:---------------:---------------:-------------: 
In our example, you can get away with using data in the directory to 

help you determine which files are stored where. Whenever this is possible, 
do itl In many cases, however, you will find that the directory itself has 
been obliterated, and, as a result, you must page through the disk manually 
in order to determine the necessary information required to reconstruct the 
directory. In order to make this exercise more interesting, the "missing" 
files have not only been Killed, but all references to them in the directory 
have been eliminated as well. This will require you to go through the disk 
and find the data. 

Step Four 

If the disk you're working on happens to contain a number of 
unreadable sectors, the next step would be to transfer all GOOD data to a 
new, formatted disk. You would do this using the COPY function as well as 
the CA)ite subroutine in the EXAMINE I EDIT DISK function. You have all 

____ ULTRA UTILITY SERIE$ ___ _ 



the necessa~ information for transfer in chart 11. In our example, this is not 
required, but you are welcome to do it if you want the practice. 

Anytime data transfer is necessary, do it in a logical sequence of steps. 
COPY all good tracks first, keeping in mind that the Start and End Track 
values you enter will be considered to be inclusive. When this is done, you 
can transfer individual sectors from any track which is not totally readable 
by first READing the sector from the faulty disk, placing your good disk in 
the SAME drive, and W"iting the data back to the same place on the new 
d'1Sk. Repeat this process as often as necessary until all good sectors have 
been transferred. If, for example, Track 17 /Sector 2 was unreadable, you 
would use the COPY function to transfer track 0 to 16 inclusive and repeat 
the procedure for tracks 18 to 34 inclusive. Then you would use the 
EXAMINE I EDIT DISK function to transfer all readable sectors from Track 
117. 

NOTE: It is (obviously) not necessary to transfer Tracks or Sectors 
which are known to be completely empty. This would be an unnecessary 
waste of time. 

Step Five 

Now that our data is transferred to a new disk, we can go through the 
process of reconstructing the directory. This is a fairly easy task, all things 
considered. If you've faithfully gone through Appendix B, you should have 
a pretty good idea of how to identify files by looking at the sectors where 
they are stored. Put the good disk into drive 0 and we're ready to go. 

The data for one of our three files is displayed quite clearly in the 
printouts we obtained earlier. If you wish, you can enter the data into Chart 
12, but you can save yourself some time if you enter it directly into Chart #3. 
File #1 is a BASIC program stored in Binary, starting and ending in Granule 
132 (only one Sector is used), and the last sector of the file contains only 
109 (60 Hex) bytes of data. 

When you enter this data into Chart #3, apply the filenames "A 1 ", (and 
"A2" and "A3" as new data becomes available), as this is the name the 
computer will assign. Now you can examine Tracks #16 and #18, containing 
our "stray" files. 

Look at Track 16 I Sector 10 carefully. Flip back and forth between 
Graphic and Hex Display if you wish. Note that the first byte in the sector is 
FF Hex. We know from Appendix B that this could indicate the start of a 
BASIC Program stored in Binary format. Is this the case? If it were your 
own program, you'd have little difficulty answering that question, but since 
it .was written by someone else, you have to do some deductive reasoning . 

____ ULTRA UTILITY SERIES ___ _ 



Press D to enter the Edit mode and move the cursor around. Pay particular 
-attention to the characters that precede the "@" symbols (which could 
indicate the presence of a "PRINT" statement). Note the Hex value of the 
character just to the left - 87 Hex. Doesn't mean much, does it? But look 
at the BASIC Token Chart in Appendix C and see if you can find 87 Hex ... 
there it isl A PRINT statement for sure. Still not satisfied? EfJt from Edit 

·mode and move through sectors until you find one that has a number in it 
that looks suspiciously like a line number. Now think - what BASIC 
statement(s) can precede a line number? How about GOTO, GOSUB, 
THEN, or ELSE? Check them out the same way you checked out the PRINT 
statement. 

One more piece of information is important to us - how many bytes of 
the last sector are part of the file? Well, first we have to find the end of the 
file, which just happens to be Sector #14. This we know because, having 
diligently checked out the disk, we noticed that there was data in Sector 
#14 but nothing in Sector #15. So Sector #14 is the end of this file. We 
know from Appendix B that the end of a BASIC-Binary program file can be 
detected by the presence of a triple zero marker("()()()"). But what happens 
if, for some reason, this marker exists more than once? This is not likely, but 
it is possible, especially if a new, shorter program has overwritten an older, 
longer one - always look for the marker that's closest to the beginning of 
the file. If you look at Sector #14, you will see this "()()()" marker (it will 
appear as 3 inverse video "@" symbols) on the 4th line from the top of the 
display. To be sure it's the right one, put your finger on the 3rd "@"and, 
using the left and right arrows, flip back and forth between Sector #13 (the 
second last sector) and Sector #14 (the last sector). You will notice as you 
do this that only the data to the right of and below your finger will change, 
indicating that the byte beneath your finger is, in fact, the last byte in the 
file. Here's what happened: when the computer writes a file to disk, it sends 
256 bytes at a time to its write buffer, and writes the data to the appropriate 
sector. As each sector is written, new data over-writes old data in the write 
buffer. After the second last sector has been written, the remaining part of 
the file may not fill the entire write buffer, so, whatever was in the buffer 
before will not be completely replaced. But the entire buffer is sent to the 
disk anyway, even though the last few bytes of the last sector may be 
"garbage". For this reason, the computer must keep track of how many 
bytes of the last sector are actual data. 

Using this method you can easily count the number of bytes in the last 
sector of the file. Our first "missing" file then, is a BASIC program stored in 
Binary, starting and ending in Granule #33, occupying 5 sectors of the 
granule, and there· are 99 bytes in the last sector. Make the appropriate 

____ ULTRA UTILITY SERIES ___ _ 



~ 

entries in Chart #2 and proceed in the same fashion for the other "missi~g" 
file in Track '18 /Sector 1. This file, you will quickly see, is also a BASIC 
program, but this time it's stored in ASCII. I'll leave it to you to determine 
the correct parameters to enter in Chart 12. 

Chart #2 should now look like the following: 

Track-Sector Data 

1---------:----------:----------:----:----:-------:-----:-----: 
:Track<s> •Sector<s> •Granule I CFile:File:Forrriat zGran :BILS : 

· r :Nall'1e:Type: (AIB> Pos~n: : 
:~-------:----------1----------:----:----1------- -----:-----: 

16 :s1 (1): 32 1 Al :iAs : !in Last : 109 : 
:---------:----------:----------:----:----:------- -----:-----: 

16 :510-514(5): 33 : A2 :BAS : Bin Last r 99 : 
:~-------:----------:----------:----:----:------- -----:-----: 

18 : 51 -56 (6): ?? : ?? r??? I ??? ???? • ??? • . . . . . . . . . 
:---------:----------:----------:----:----:------- -----:-----: 

The number in parentheses in column 2 represents the number of 
sectors in the last granule. Column 7 is provided so that when you transfer 
information to Chart #3~ you can easily list granule numbers in chonological 
order. Notice that entries are made in this chart in order by increasing track 
numbers, but that filenames are determined according to the way in which 
BASIC normally organizes files. Remember, BASIC will always strive to 
enter new files as close as possib.le to the directory track. If you run into 
problems with a disk that has many' files on it, keep this tendency in mind -
it will make the reconstruction process much easier. 

Step Six 

Now that all our data is compiled in Chart #2, it is easy to transfer the 
information to Chart #3. Chart #2 is organized to facilitate looking through 
the disk in sequence by track number, while Cflart #3 is organized to 
facilitate data entry in the RECONSTRUCT DIRECTORY function. When 
the data is transposed, Chart #3 should look as follows: 

Assumed Layout of Directory 

:~-------:---------:---------:----------------:---------:----: 
:File Name:File Type: Storage : Gr anules Used : Sectors :BILS: 

: Format : <Chronological>:Last Gran: 
:---------:---------: ---------:----------------:---------:----: 

Al :P.AS Prog: I>.inar!,l :32 1 :0060: 
:---------:---------:---------:----------------:---------:----: 

?? ??? ??? • ., ? . : . ? :"J ??? : 

:---------:---------:---------:----------------:---------:----: 
A3 :P.AS Prog: ASCII :34 6 :005A: 

:--- ·------:---------:---------:----------------:---------:----: 

____ ULTRA UTILITY SERIES ___ _ 



Step Seven 

Now it is a simple case of entering known data into the RECON­
STRUCT DIRECTORY routine of the DISKEY program. This I will leave to 
you as an exercise. After you have rebuilt the directory, remember to use 
the information in column 16 of Chart 13 to correct the Bytes In Last sector 
as reflected in bytes 14 and 15 in each directory entry. Use the 
EXAMINE/ EDIT DISK function and [f1H·1;f to enter the data in Hex 
notation. 

Step Eight 

After all the data have been correctly entered, the only thing that 
remains is to verify that it was correctly written to the disk. Use the 
EXAMINE function to look at Track 117, Sector 12 and 13, to satisfy 
yourself that everything is correct. If it is, then EfJt the program as 
described in the main text and RENAME the files as follows: 

A1 /BAS 
A2/BAS 
A3/BAS 

---> 
---> 
--.-) 

MASTER/BAS 
PROGSEL 1 I BAS 

' PROGSEL2 I BAS 

"PROGSEL 1" and "PROGSEL2" represent the same program, stored in 
different formats. Their function is quite simple - they allow you to select 
and execute any prog.ram on your disk just by pressing a button on the 
keyboard. Try one of them - you may want to keep a copy on each of your 
disks - and you'll find that they are very easy to use. 

Summary 

Any disk that starts giving you trouble can be taken through these 
eight steps. There are no guarantees that your data will be saved, but at the 
very least you now have a route to follow. Good luck, and have fun I 

____ ULTRA UTILITY SERIES ___ _ 



APPENDIX E 

SAMPLE PRINTOUTS 

A. Track I Sector Printout 

In this type of printout, the ASCII representations of all hex bytes 
greater than 7F have been normalized so that bit n is cleared to zero. This 
ensures that all graphics characters are converted to "printable" data. After 
this conversion, any character that remains unprintable is represented by a 
period. 

DRIVE 0/TRACK 17/SECTOR 02 

Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl AAAAAAAAAAAAAAAA 
Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl AAAA .... AAAAAAAAAA 
Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl AAAAAAAAAAAAAAAA 
Cl Cl Cl Cl Cl Cl Cl t:'! \.l Cl Cl Cl Cl Cl Cl Cl MAAAAAAAAMAAAA 
Cl Cl Cl Cl Cl Cl Cl Cl . Cl Cl Cl Cl Cl Cl Cl Cl AAAAAAAA~~AAA 

Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl MAMAAAAM.AAAAA 
Al A2 Al A2 Al A2 Al A2 Al A2 Al A2 Al A2 Al A2 •••••••••••••••• ... .... . 
Al A2 Al A2 Al A2 Al A2 Al A2 Al A2 Al A2 Al A2 !•!•!•!•!•!•!•!• 
A4 AS A4 AS A4 AB A4 AB A4 AB A4 AB A4 AS A4 AS S(S(S(S(S(S<tctC • A4 AB A4 AB A4 AB A4 AB A4 AB A4 AB A4 AS A4 AB S(S(S(S(S(SU CS< 
C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 DDDDDODDDDDDODDD 
C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 DDDDDDDDODDDDDDD 
C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 DDDDODDODDDDDDDD 
C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 DDDDDDDDODDDDDDD 
C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 DDDDDDDDDDDDDDDD 
C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 DDDDDDDDOODDDDDD 

DRIVE 0 / TRACK 17/SECTOR 03 

40 41 53 54 45 5 2 20 20 42 41 53 00 00 20 00 60 HAST ER IAS •• •• 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................ 
FF FF FF FF fF FF FF FF FF FF FF FF FF FF FF FF ............... . 
FF FF FF FF FF FF FF FF FF FF · FF FF FF FF FF FF .. .. ...... .... .. 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .... ...... ...... 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...... ....... ... 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................ 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .... .. .... ...... 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .... ............ 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...... .......... 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .... ....... .. ... 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .......... ... ... 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .... .. .......... 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ...... ...... .... 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................ 
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................ 

____ ULTRA UTILITY SERIES ___ _ 



B . . Directory Printout. 

In this type of printout, the number of free granules is determined not 
by an examination of the File Allocation Table (which is how BASIC does 
it), but rather by counting the number of granules occupied by each 
directory entry and subtracting the total from 68. This procedure will 
produce correct results for any standard disk, but if the disk has actually 
been filled by non-standard means (as was done with the DISKEY master 
disk), this will produce erroneous results. 

DISKETTE DIRECTORY FOR: «<DISKEY>» & <<<CCDIAG>>; 

MASTER BAS 0 B 01 BASIC PROGRAM I BINARY FORMAT 

FREE SPACE REMAINING: ffl GRANULES 

____ ULTRA UTILITY SERIES ___ _ 



CCDIAG FUNCTIONS 

ROM TEST 

This simple test calculates a two-byte checksum for the ROM selected. 
(The checksum is a running total of the contents of each memory location 
in the ROM.) As the checksum is being determined, it will be displayed (in 
hexadecimal) and continually updated on the screen. 

The values displayed as "CHECKSUM SHOULD BE: $xxxx" are based 
on known values for BASIC 1.1, EXTENDED BASIC 1.0, and DISK BASIC 
1.0. 

Once the selected test is complete, press IU0Ji1 to return to the sub­
menu. To perform another test, simply press another key, or press !:J;ft!13 to 
return to the main menu. 

RAM TEST 

This test checks all RAM addresses from 0 to the end of 16K or 32K 
memory, including the area occupied by the program. It does this by writing 
all possible values fro~ 0 to 255 into each location, checking to ensure that 
the data is correctly stored there and then restoring the original contents. 
As this process takes place, the screen will display the current address 
being checked. 

Once the check is complete, a message will be displayed indicating the 
status of your RAM. If any bad addresses are detected, the message will 
indicate the first bad address and list the individual bits which are at fault. 
This will enable you to replace a specific bad chip, instead of the entire 
RAM. 

The !:J;Jf.1:! key is inactive ·during this test. If you must halt ·the test for 
any reason, you can do so by pressing the Cllllj button. However, AVOID 
doing this while the displayed address is between $1000 and $2600, as you 
may cause part of the program to be changed. This could have disastrous 
results later on. 

KEYBOARD TEST 

Selection of this test will cause a keyboard matrix to be displayed on 
the screen. Each time a key or a combination of keys is pressed, a blue 
square will cover the appropriate spot on the matrix. Provision is made for 
testing the joystick buttons as well. The matrix will remain on the screen 
until a 10-second delay between keypresses occurs, after which you will be 
returned to the main menu. 

____ ULTRA UTILITY SERIES ___ _ 



JOYSTICK TEST 

This test uses a green 128 x 64 graphic screen, split into 2 vertical 
halves - the left side for the left joystick, and the right side for the right 
joystick. As the joystick is moved around, a red dot appears on the screen in 
the appropriate position. Holding down the firing button during this 
movement will cause dots to be erased. 

The [tl!U;i key ·will erase the entire screen, and the !:ljft·':t key will return 
you to the main menu. 

PRINTER TEST 

This test has two distinct functions. First is the status check which 
allows testing of the computer's ability to detect a READY I NOT READY 
condition for various printer states. Try this test with power ON I OFF, 
printer ONLINE I OFFLINE, RESTART I RESET, and printer OUT OF 
PAPER. When done, press !:J;lf!l:f to return to the sub-menu. 

The second test assumes that the printer is an 80-column device, and 
sends 10 lines of standard characters at the selected baud rate. (Note that 
pressing [!Z1]]ll will cause 600 baud to tie selected.) When complete, you will 
be automatically returned to the sub-menu. Press !:1;Jf!13 to return to the 
main menu. 

CASSETTE TEST 

This test first writes data to the tape and then reads it back to ensure it 
was written properly, and can be completed simply by following the 
directions on the screen. Possible errors include: 

I. CHECKSUM ERROR - data as read are not the same as were 
written; 

II. MEMORY ERROR - data are correct on tape but will not store 
properly in · memory, indicating possible 
bad RAM; 

Ill. LOST DATA ERROR - data were written correctly and read 
correctly into good RAM, but are no 
longer the same as originally written, 
indicating either intermittently bad RAM, 
or the original checksum was incorrectly 
calculated. 

You can exit this function by pressing !:J;Jf·J:f any time the flashing 
cursor appears. 

____ ULTRA UTILITY SERIES ___ _ 



DISK TEST 

This is a four step test that checks the ability of the specified drive to 
read, write and smoothly operate the stepping motor. Press l:l;l(·D at the 
sub-menu to quit. 

A. Full Test 

This part of the test checks all of the functions at once by calling each 
of the other subroutines. First, you are asked to place an UNFORMATTED 
disk in the specified drive. Strictly speaking the disk need not be 
unformatted, but be aware that this routine re-initializes (and erases) the 
disk, in exactly the same way as the DSKINI command works. This tests 
the controller's ability to write and then read all track information, including 
system data. It also confirms that the drive speed is within allowable limits. 
Once this part of the test is complete, the read/write/verify check is 
performed, followed by the stepping motor check. 

B. Stepping Motor Test 

This subroutine an~ those that follow will prompt you to put a 
FORMATTED disk in th!:! specified drive. (The prompt will NOT be present if 
you are doing the full test.) This pa~ checks rapid motion of the stepping 
motor, and will do 10 passes consisting of stepping from track 0 to track 34 
and back again. 

An error condition during this test could be caused by any of the 
following: 

I. Dirty contacts between the computer and the drive; 
II. A bad stepping motor; 
Ill. The read/write hea.d snagging the disk itself, due to close 

proximity to the disk surface, resulting in uneven wear on the 
head. 

C. Read Test 

This subroutine requires a formatted disk and will read only the data 
(not system information) from each sector of each track. An error condition 
during this test could indicate any of the following: 

I. Dirty contacts; 
11. Dirty or misaligned read-write head; 
Ill. Incorrect or fluctuating drive speed; 
IV. Slipping pulley band, caused by dirt; 
V. A stepping motor problem; 
VI. A faulty disk. 

____ ULTRA UTILITY SERIES ___ _ 



D. Write Test 

The write test, which also requires a formatted disk, will first read the 
data from each sector of each track, write the same data back to the same 
sectors, and then read it again to verify that it was written correctly. Any 
error condition can be caused by the problems listed in the "Read Test" 
section. 

NOTE: For further information on the care of disks and drives, refer to 
page 13. 

VIDEO TEST 

This test consists of two parts, which are selected from the submenu. 
Press l:ljlf.13 to return to the main menu. 

A . Color Adjustment 

Use this test to adjust the brightness, contrast, color intensity, and tint 
of your color monitor. The screen displays 8 vertical color bars which can be 
moved left or right by means of the arrow keys for fine-tuning purposes. 
Press t1i·Jil:M;j to invert the test pattern. Press !:J;Jf.13 to return to the sub­
menu. 

B. Graphics Check 

This is an interactive test that allows you not only to test the various 
' 

graphic modes, but also to experiment with them. At the start, the screen 
will display a standard text screen with inverse video "@"symbols filling 
the entire screen. A flashing cursor will appear in the upper left corner. 
Several keys have been implemented to allow changes from one mode to 
another. All keys incorpo~ate automatic repeat. 

i:1;1ua 

Increase or decrease the 3-bit graphic mode value. 
Increase or decrease the 8-bit color set select value. 
Increase or decrease the ASCII I Graphic value of the 
vertical line of characters beneath the cursor. 
Send the current graphic mode and color set 
information to the printer (at the last selected baud 
rate). 
Fill the entire screen with the character under the 
cursor. 
Move the cursor one position to the right and 
wraparound to the start if at the end of the top line. 
Return to the sub-menu. 

____ ULTRA UTILITY SERIES ___ _ 



NOTE: 1 •. If you have only 16K, some of the graphic modes may produce 
garbage at the bottom of the screen. 
2. Regardless of which screen Is displayed, you can identify 
different graphic modes by the size and type of cursor being 
displayed. (In some modes, you may see two distinct cursors). 
3. There are 8 different graphic modes and 32 different color I 
screen types, for a total of 256 different graphic combinations 
(some of which require as much as 9K RAM I) 

SOUND TEST 

This is another interactive test that allows you to experiment while 
confirming that your digital/analog converter works properly. The basis of 
the routine is quite simple. 

SOUND 

SND01 
SND02 

SND03 

LOA 
STA 
LOA 
ORA 
STA 
LOB 
DECB 
BNE 
ADDA 
BRA 

1$3F 
$FF23 ENABLE SOUND 
BASE GET STARTING VALUE 
12 KEEP PRINTER QUIET 
$FF20 MAKE A NOISE 
DURATN GET NOTE TIMER 

COUNTDOWN 
SND03 LOOP TILL DONE 
MOD ADD IN MODULATION 
SND02· AND KEEP LOOPING 

It is actually quite a bit more complex than this, but it gives you the 
idea of how sound is created. The variables BASE, DURA TN, and MOD are 
constantly displayed on the screen, both in hexadecimal and in ASCII. You 
can use the following keys (~ith repeat) to change their values (initially set 
to 80 Hex). 

Increment/decrement the BASE VALUE variable. 
Rotate all variables upward/downward one position. 
Increment/decrement the DURATION variable. 
Increment/decrement the MODULATION variable. 
Increment/ decrement ALL 3 variables. 
Complement (invert) all values. 
Return to main menu. 

NOTE: No sound (except a low-volume clicking) will occur while any key is 
depressed. 

____ ULTRA UTILITY SERIES ___ _ 


	Front Cover
	Table of Contents
	Introduction
	Program Operation
	Diskey Functions
	1. Disk Map
	2. Examine/Edit Disk
	A) Graphic Display Mode
	B) Hexadecimal Display Mode
	C) Edit Mode
	D) Editing Control Switches

	3. Erase Disk
	4. Backup Utility
	5. Copy to New Disk
	6. Reconstruct Directory
	7. Print Directory
	8. Calibrate Drive
	Disk Drive Diagram
	Care & Maintenance


	Appendix A - The Color Computer Disk System
	General
	The Directory
	Directory Layout Diagram
	Recovering Killed Files

	Appendix B - Notes on File Structure
	Binary BASIC Programs
	Machine Language Programs
	ASCII BASIC Programs
	Data Files

	Appendix C - Charts & Tables
	Directory Reconstruction Charts
	BASIC Tokens
	CHR$/POKE Comparison
	Hex to Decimal Conversion

	Appendix D - Sample Run Through
	Appendix E - Sample Printouts
	A. Track/Sector Printout
	B. Directory Printout

	Diagnostics
	1. ROM Test
	2. RAM Test
	3. Keyboard Test
	4. Joystick Test
	5. Printer Test
	6. Cassette Test
	7. Disk Test
	8. Video Test
	9. Sound Test




